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To demonstrate  the crystallinity of the soft disk ground state, a modified 
treatment of this model is given, as Radin 's  proof of a crucial lemma can be 
shown to be incorrect. 
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1. INTRODUCTION AND STATEMENT OF RESULTS 

Recently there has been much work which shows that--in the framework 
of classical mechanics--some classes of two-body potentials give rise to 
crystalline ground states. As surface tension produces notorious difficulties 
in dimensions greater than one, (0 to the best of my knowledge there are 
only two attempts to show crystallinity of ground states in two dimen- 
sions (2'3) based on some considerations given by Harborth. (4) 

In Ref. 3 Radin constructs a soft disk model, using the two-body 
potential 

~+oo, for 0 < r < l  
V(r)=~24r-25, for 1 < r<25/ /24 

~0, for 25//24 < r 

in two dimensions, and tries to show the following: 

Theorem. In any ground state of V all separations of two points are 
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of unit length and the ground states for V are subsets of the triangular 
lattice, thus crystalline. 

Radin's proof of his Lemma 4 and his examination of the spatial form 
of a ground state make use of the inequality 

x <[3n - 6 -  ( 1 2 x -  24n + 33)'/2 t = :  [ f ( x ) J  

where [t] denotes the integral part of t. 
For n E N ,  n>/ 13, x < 3 n  the inequality is asserted to imply x 

< [3n - (12n - 3)1/2]. This is manifestly incorrect as the reader may verify 
by inserting x = 209/8; n -- 13 or x = 73/2; n = 17. 

Fortunately the above theorem can be shown to remain valid. In the 
following we shall see that the appearance of the inequality x < [f(x)] can 
be avoided. By consideration of some geometrical properties of n-point 
configurations it is replaced by the inequality [y] < f([y]), which is much 
easier to handle. Thus the proof of the theorem turns out to be essentially 
shorter than Radin's attempt. However, two basic inequalities correctly 
derived in Ref. 3 are still needed. 

2. DEFINITIONS AND PROOFS 

We have to examine configurations of n points which minimize the 
total potential energy. These configurations will be called "minimal." 

Each pair of points with separation 1 < r < 25/24 will define a 
"bond," represented by the shortest line segment containing the two points. 
If such a bond is not of unit length, it will be called "exceptional." In a 
minimal configuration the bond graph must have a simple closed polygonal 
boundary, so we can restrict ourselves to this case. 

In Ref. 3 the following two inequalities are rigorously proven: 
(a) Let E be the energy of an n-point configuration C which has 

exactly d boundary vertices in the associated bond graph. Let E '  be the 
energy of the configuration C'  obtained from C by removing the boundary 
points. Then we have 

IEI ~ IE'I + 3 d -  6 (1) 

The inequality is strict if there exists an angle a v ~ ~r/3 between two 
neighboring bonds containing the same boundary vertex. 

(b) Let B be the number of bonds in C. Then we obtain 

n - d > /  B - 2 n + 3  (2) 
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The inequality is strict if C contains a j-gon, j 1> 4, a "nontriangle." 
These inequalities now allow us to proceed as follows. 

Lemma 1. Suppose the graph of C contains only triangles and at 
least one bond is exceptional. This implies [El < [3n - (12n - 3)1/2]. 

Proof. First of all, we note that V(r) has a unique minimum at r = 1 
with V(r) = - 1 and that the range of finite values for V(r) is - 1 < V(r) 
< 0. So in any configuration of finite energy we have I EI < B. As one bond 
is exceptional, we have iE[ < B and from (2) we get n - d > IE[ - 2n + 3 
o r  

n - d ~>[IEI + l ]  - 2n + 3 (3) 

Now we can use Harborth's induction technique. (4) If n < 3, the lemma is 
trivial, so we can state n >/3. We assume the lemma holds for all t-point 
configurations, if t < n, and we have to show it holds for any n-point 
configuration. 

Now let C be an n-point configuration. Then the above assumption 
especially implies that the lemma holds for the configuration C' derived 
from C as in (a) above, if n - d > 0. If C contains only boundary points, 
then we have n - d = 0 and the lemma can be proven directly, as (3) then 
implies 

[IEI + 1] < 3 n - ( n  + 3) < [ 3 n -  (12n - 3) ' /2] 

If n - d > 0, there are two possible cases: 
(i) C '  contains an exceptional bond. With the induction assumption 

and (1) we get 

IEI < IE'I + 3 d - 6  < [  3 ( n -  d ) -  ( 1 2 ( n -  d ) -  3) V2] + 3 d - 6  
(4) 

[Igl + 1] < 3(n - d)  - (12(n - d)  - 3)1/2+ 3 d -  6 

Together with (3) this leads to [IEI + 1] ~< 3n - 6 - (12[IE I + I] - 24n + 
33) 1/2. [tEl + 1] is an integer, so from Refs. 2 and 4 we know that this 
inequality implies 

[lel+ 1] < [ 3 n -  ( 1 2 n -  3) '/2] (5) 

(ii) The exceptional bond touches the boundary and (i) does not 
hold. In this case C'  is a configuration already examined in Refs. 2 and 4 
and from there we know that 

Ig'l < [ 3 ( n -  d ) -  ( 1 2 ( n -  d ) -  3) I/2] (6) 
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Furthermore at least one of the boundary angles is not r so we get 
from (1) 

IE[ < IE't + 3 d - 6  ~<[3(n - d)  - (12(n - d ) -  3)1/21 + 3 d - 6  

This is again (4), which leads together with (3) to (5). So the lemma is 
proven. �9 

Lemma 2. Suppose the graph of C contains at least one nontriangle. 
This implies IEI < [3n - (12n - 3)1/2]. 

Proof i  As there is a nontriangle in C, from (2) we get n - d >/(B + 
1) - 2n + 3. Of course, IEI -<< B again, so the inequality immediately leads 
to (3). Again induction is used. As (3) is still valid, the lemma holds for all 
configurations containing only boundary points. As in the proof of Lemma 
1 we assume the lemma holds for C'  derived from a given configuration C. 

(i) The graph of C'  contains at least one nontriangle or at least one 
exceptional bond. Then with the induction assumption or Lemma 1 

IEI < IE'I + 3d - 6 < [3 (n  - d)  - (12(n - d)  - 3) 1/2] + 3d - 6 

This is (4) for another time. 
(ii) The nontriangle touches the boundary and (i) does not hold. 

Reasoning as in the proof of Lemma 1 we can use (6) in this case and again 
at least one boundary angle is not r So we can proceed as in Lemma 1 
and the proof is complete. �9 

From Refs. 2 and 4 we know that there exist configurations with 
IEI = [3n - (12n - 3) 1/2] which are subsets of the triangular lattice. Com- 
bining this with the two lemmas, we see that the theorem stated in the 
introduction is proven. 
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